Algorithms for graded injective resolutions and local cohomology over semigroup rings
نویسندگان
چکیده
Let Q be an affine semigroup generating Z, and fix a finitely generated Z -graded module M over the semigroup algebra k[Q] for a field k. We provide an algorithm to compute a minimal Z-graded injective resolution of M up to any desired cohomological degree. As an application, we derive an algorithm computing the local cohomology modulesH I(M) supported on any monomial (that is, Z -graded) ideal I. Since these local cohomology modules are neither finitely generated nor finitely cogenerated, part of this task is defining a finite data structure to encode them.
منابع مشابه
Bass Numbers of Semigroup-graded Local Cohomology
Given a module M over a ring R that has a grading by a semigroup Q, we present a spectral sequence that computes the local cohomology H I(M) at any graded ideal I in terms of Ext modules. We use this method to obtain finiteness results for the local cohomology of graded modules over semigroup rings. In particular we prove that for a semigroup Q whose saturation Q is simplicial, and a finitely g...
متن کاملThe Alexander duality functors and local duality with monomial support
Alexander duality is made into a functor which extends the notion for monomial ideals to any finitely generated N-graded module. The functors associated with Alexander duality provide a duality on the level of free and injective resolutions, and numerous Bass and Betti number relations result as corollaries. A minimal injective resolution of a module M is equivalent to the injective resolution ...
متن کاملOn natural homomorphisms of local cohomology modules
Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$. Let $I$ be an ideal of $R$ with $grade(I,M)=c$. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms $gamma: Tor^{R}_c(k,H^c_I(M))to kotim...
متن کاملLinearity Defects of Modules over Commutative Rings
This article concerns linear parts of minimal resolutions of finitely generated modules over commutative local, or graded rings. The focus is on the linearity defect of a module, which marks the point after which the linear part of its minimal resolution is acyclic. The results established track the change in this invariant under some standard operations in commutative algebra. As one of the ap...
متن کاملTame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 39 شماره
صفحات -
تاریخ انتشار 2005